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Abstract

This paper addresses propagation of waves of purely shear deformation in an unbounded sandwich plate
composed of two identical isotropic skin plies and an isotropic core ply. To capture propagation of these
waves, a three-dimensional formulation of the theory of elasticity (‘refined theory’) and a two-dimensional
formulation of the sandwich plate ‘elementary’ theory are used as ‘starting points’ for the analysis. ‘In-
phase’ and ‘anti-phase’ waves (with respect to in-plane deflections of skins) are considered independently of
each other. For both types of motion, dispersion curves obtained by use of ‘elementary’ theory are
compared with those obtained by use of the ‘exact’ theory (which involves the theory of elasticity in
description of wave motion in a core ply). It is shown that the simplified models suggested are capable of
giving an accurate description of propagating waves.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

This paper aims to complete the comparison of exact and simplified theories of wave motion in
sandwich plates with and without heavy fluid loading presented in Ref. [1]. In this reference, the
plane problem formulation has been explored, which reduces the stationary dynamics of a plate to
its counterpart for a beam. However, a rectangular sandwich plate has a spectrum of resonant
frequencies of vibrations in purely shear modes, which do not involve any transverse deflections,
see front matter r 2005 Elsevier Ltd. All rights reserved.
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see Ref. [2]. The existence of this spectrum suggests that purely shear waves may propagate in an
unbounded sandwich plate. These waves can be generated by, say, out-of-plane bending of
stiffeners attached to the skins or by torsion of rods perpendicular to the plate and connected to
one skin ply or to both of them. In a bounded plate, they can convey energy from an excitation
zone to its remote parts and produce intensive transverse vibrations at the boundaries due to the
modal coupling.
To capture such waves in an infinite plate, it is necessary to explore a spatial problem

formulation in elastodynamics for a core ply (in the ‘exact’ theory) and to introduce standard
assumptions, which define the purely shear deformation. Apparently, the heavy fluid loading has
no influence on propagation of a purely shear wave as long as the fluid’s viscosity is neglected.
Analogously to the cases considered in Refs. [1–3], the simplified sandwich plate theories in two
dimensions may also be formulated and their predictions may be compared with the exact
solution. This is exactly the content of the present paper.
The paper is structured as follows. In Section 2, propagation of shear waves in sandwich plates

is considered in the framework of a theory of elasticity. Due to the natural symmetry of a
sandwich plate composition, two classes of wave motions (‘in-phase’ and ‘anti-phase’ ones) are
analysed separately and two dispersion equations are derived. Elementary modelling of wave
propagation for the same two classes of motions is presented in Section 3. The dispersion curves,
which are obtained for a sandwich plate in the framework of these theories, are compared in
Section 4. In Section 5, conclusions are presented.
2. Formulation of the problem within the framework of a theory of elasticity

Consider an unbounded sandwich plate consisting of two thin and relatively stiff isotropic plies
(skins) and a soft isotropic core ply between them, as shown in Fig. 1. Since the ‘potential’ waves
of coupled flexural and shear deformation have been systematically studied in both the exact and
the simplified formulations in Ref. [1], here only the purely shear ‘vortex’-type waves are
considered. To investigate propagation of these waves, it is not possible to use the plane problem
formulation (i.e., to consider cylindrical bending of a sandwich plate). However, an important
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Fig. 1. Sandwich plate composition—in-plane displacement of plies.
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simplification is introduced by the observation that the lateral displacement w in all three plies is
absent [2] in this particular case.
As is well known [4], the mechanical properties of skin and core plies of sandwich plates used, for

example, in naval or aerospace structures, are very different. Specifically, elastic and geometry
parameters of skin plies considered individually are normally those of conventional thin plates.
Elastic properties of the material of each skin ply are specified by densities rk, k ¼ 1, 3, Young
moduli Ek, k ¼ 1, 3, and Poisson coefficients n1 ¼ n3 ¼ n. Then, to study their in-plane deformation,
it is sufficient to assume that the in-plane displacements of the mid-surfaces of skin plies are
independent of transverse coordinate, uk ¼ ukðx; y; tÞ, vk ¼ vkðx; y; tÞ, k ¼ 1, 3 (they are positive if
co-directed with the coordinate axes shown in Fig. 1) and their out-of-plane displacement vanishes,
wk � 0. Then, motions of skin plies are governed by the following equations:

Ek

1� n2
q2uk

qx2
þ

Ek

2ð1� nÞ
q2vk

qxqy
þ

Ek
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qy2
� rk

q2uk

qt2
¼ �
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hk

, (1a)

Ek
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q2uk

qxqy
þ

Ek

2ð1þ nÞ
q2uk

qx2
þ

Ek

1� n2
q2vk

qy2
� rk

q2vk

qt2
¼ �

T k½ �
yz

hk

. (1b)

Respectively, T k½ �
xz ðx; y; tÞ and T k½ �

yz ðx; y; tÞ, k ¼ 1, 3 are the interfacial shear stresses acting at skin plies
from the core. In general, they may also contain external driving components, but as far as
propagation of free waves is concerned an external loading is omitted.
The system of differential equations (1) is substantially simplified, when a purely shear

deformation is addressed: ukðx; y; tÞ ¼ ukðy; tÞ, vkðx; y; tÞ ¼ vkðx; tÞ, k ¼ 1, 3. The problem
formulation is straightforwardly reduced to two uncoupled equations with respect to ukðy; tÞ
and vkðx; tÞ, k ¼ 1, 3:

Ek

2ð1þ nÞ
q2uk

qy2
� rk

q2uk

qt2
¼ �

T k½ �
xz

hk

, (2a)

Ek

2ð1þ nÞ
q2vk

qx2
� rk

q2vk

qt2
¼ �

T k½ �
yz

hk

. (2b)

Due to the isotropy of skin plies, it is sufficient to solve any one of these two equations by setting,
say, vkðx; tÞ ¼ 0 and T k½ �

yz ðx; tÞ ¼ 0, k ¼ 1, 3. Therefore, a preferred direction of wave propagation
along the y-axis is specified. As has been discussed, the core ply of a sandwich plate is much
thicker and it is composed of material, which is much softer, than the skin plies. Thus, dynamics
of a core ply should be described by the standard dynamic theory of elasticity, see for example
Ref. [5]. Generally, the displacement field is formulated as

~u ¼ ~rjþ rot ~c. (3)

Here ~uðu2; v2;w2Þ is a vector of displacements in a core ply, j is a scalar potential and ~cðcx;cy;czÞ

is a vector potential. The calibration condition is formulated as

div ~c ¼ 0. (4)

Inasmuch as a wave of purely shear deformation is concerned and the preferred direction of wave
propagation is chosen, it is possible to adopt the following standard assumptions: j � 0, cx ¼ 0,
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cy ¼ c0ðy; z; tÞ, cz ¼ czðy; z; tÞ. Then, the displacements field becomes

u2ðy; z; tÞ ¼
qcz

qy
�

qc0

qz
; v2ðy; z; tÞ � 0; w2ðy; z; tÞ � 0. (5)

The calibration condition (4) is re-written as

qcz

qz
¼ �

qc0

qy
. (6)

Thus, Lamé equations are reduced as follows:

q2c0

qy2
þ

q2c0

qz2
�

1

c22

q2c0

qt2
¼ 0, (7a)

q2cz

qy2
þ

q2cz

qz2
�

1

c22

q2cz

qt2
¼ 0. (7b)

Here c22 ¼ E=2ð1þ nÞr is the velocity of shear waves in the core material. The material density of a
core ply, its Young module and Poisson coefficient are denoted as r, E and n, respectively.
Some elementary algebra gives the following formulation of the shear stresses ðG ¼ E=2ð1þ nÞÞ:

txzðy; z; tÞ ¼ �G
q2c0

qz2
�

q2cz

qyqz

� �
, (8a)

tyzðx; z; tÞ ¼ 0. (8b)

The normal stress also vanishes, szðx; z; tÞ � 0.
The system of differential equations (7) should be solved with the following compatibility

conditions at the interfaces:

z ¼
h

2
: u2ðy; z; tÞ ¼ u1ðy; tÞ, (9a)

z ¼ �
h

2
: u2ðy; z; tÞ ¼ u3ðy; tÞ. (9b)

The interfacial distributed forces involved in Eqs. (1) and (2) are formulated as

T 1½ �
xzðy; tÞ ¼ �txz y;�

h

2
; t

� �
, (10a)

T 3½ �
xzðy; tÞ ¼ txz y;

h

2
; t

� �
. (10b)

The following scaling is introduced: y ¼ ȳh, z ¼ z̄h, uj ¼ ūjh, wj ¼ w̄jh, j ¼ 1, 2, 3.
Propagation of a time-harmonic elastic wave in an unbounded plate is considered, so that

ūj ¼ Uj expðkȳ� iotÞ; j ¼ 1; 2; 3,

cz ¼ Czðz̄Þ exp kȳ� iotð Þ; c0 ¼ C0ðz̄Þ exp kȳ� iotð Þ. (11)
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Hereafter bars over non-dimensional variables are omitted, o is a positive excitation frequency
and k is, a priori, a complex wavenumber. Eq. (11) is substituted to Eqs. (7), (9) and the problem
in elasticity for the core ply is formulated as

d2Cz

dz2
þ k2

þ
oh

c2

� �2
" #

Cz ¼ 0, (12a)

d2C0

dz2
þ k2

þ
oh

c2

� �2
" #

C0 ¼ 0, (12b)

z ¼
1

2
: �kCz �

dC0

dz
¼ U3, (12c)

z ¼ �
1

2
: �kCz �

dC0

dz
¼ �U1. (12d)

It should be observed that there is no contradiction between the number of boundary conditions
and the number of differential equations inasmuch as the calibration condition (6) must be taken
into account in solving the system (12).
The symmetric composition of a sandwich plate (h1 ¼ h3, E1 ¼ E3, r1 ¼ r3) is considered and

therefore it is convenient to identify two uncoupled classes of linear wave motions and analyse
them separately. One of them is related to shear vibrations, which occur in the ‘anti-phase’ mode
for the skin plies, U1 ¼ �U3 ¼ U0. Naturally, this class of motion is of vortex-type. In a sense,
one may imagine clockwise and anti-clockwise vortices travelling in the ‘upper’ and the ‘lower’
skin plies, which induce twisting deformation in a core ply. In opposition, by letting
U1 ¼ U3 ¼ U0, a kind of ‘in-phase’ motions of skin plies of a sandwich plate is specified. This
class of motion can be thought of as a conventional shear wave in the core ply coupled with
similar waves in skins.
Consider the case of ‘anti-phase’ wave motions (i.e., U1 ¼ �U3 ¼ U0). A general solution of

Eqs. (12a) and (12b) is formulated as

CzðzÞ ¼ B sinhðazÞ; C0ðzÞ ¼ A coshðazÞ; a2 ¼ �k2
�

oh

c2

� �2

. (13)

The calibration condition acquires the elementary algebraic form

Ak ¼ �Ba. (14)

Respectively, the boundary conditions (12c) and (12d) are reduced to the single one

Aa sinh
a
2

� �
þ Bk sinh

a
2

� �
¼ �U0. (15)

The solution of Eqs. (14) and (15) is A ¼ U0a=ða2 þ k2
Þ sinhða=2Þ, B ¼ �kU0=ða2 þ k2

Þ sinhða=2Þ.
The interfacial stresses then become

txz

h

2

� �
¼ �GaU0

coshða=2Þ
sinhða=2Þ

. (16)



ARTICLE IN PRESS

S.V. Sorokin / Journal of Sound and Vibration 291 (2006) 1208–1220 1213
The dispersion equation is

k2
¼ �

2 1þ nð Þr1o
2h2

E1
þ

E

E1

h

h1
a
cosh a=2

� �
sinh a=2

� � . (17)

A solution in the case of ‘in-phase’ motions ðU1 ¼ U3 ¼ U0Þ is obtained in a similar way. Elastic
potentials are defined as

CzðzÞ ¼ ~B coshðazÞ; C0ðzÞ ¼ ~A sinhðazÞ; a2 ¼ �k2
�

oh

c2

� �2

. (18)

The calibration condition preserves the form (14). Respectively, the boundary conditions (12c)
and (12d) are now reduced to

~Aa cosh
a
2

� �
þ ~Bk cosh

a
2

� �
¼ �U0. (19)

The solution of Eqs. (14) and (19) is ~A ¼ U0a=ða2 þ k2
Þ coshða=2Þ, ~B ¼ �kU0=ða2 þ k2

Þ coshða=2Þ.
The interfacial stresses then become

txz

1

2

� �
¼ �GaU0

sinhða=2Þ
coshða=2Þ

. (20)

The dispersion equation for this type of motion is

k2
¼ �

2ð1þ nÞr1o
2h2

E1
þ

E

E1

h

h1
a
sinhða=2Þ
coshða=2Þ

. (21)

The dispersion equations (17) and (21) have infinitely large number of roots, which are either
purely real, or purely imaginary, or complex. In principle, various methods may be used to find
these roots, depending on available software and computing facilities. In this paper, the
propagation of waves in the sandwich structures used in shipbuilding or aerospace industries is
addressed. From the practical viewpoint, it is most important to find the roots, which
define propagating wave in the not-too-high frequency range. Then, the first roots are not too
large and the transcendent dispersion equations may conveniently be transformed to a simple
polynomial in k2 form by expanding hyper-trigonometric functions into power series and
elementary algebraic manipulations. The order of this dispersion equation is controlled by a
number of terms retained in power series. For each particular value of a frequency parameter, all
roots of this approximate polynomial equation are readily found numerically by use of, for
example, symbolic manipulator Mathematica [6]. They are then used one by one as the ‘initial
guess’ to search numerically for the roots of the original dispersion equations. This procedure
gives ‘refined’ values of wavenumbers, and the accuracy of a polynomial approximation of
dispersion equations is readily accessed.
This ‘exact’ or ‘refined’ solution of the problem of wave propagation in a sandwich plate is used

hereafter to check the validity of simplified models. A set of simplified theories, which may be used
to describe first branches of dispersion curves, is formulated in the following section. The
existence of an infinite number of solutions of dispersion equations (17) and (21) suggests that, at
the boundaries of a sandwich plate, considered in the framework of a ‘refined’ theory, it is
necessary to formulate conditions being continuously held along the thickness of a core ply, i.e.



ARTICLE IN PRESS

S.V. Sorokin / Journal of Sound and Vibration 291 (2006) 1208–12201214
for � 1
2
ozo 1

2
. As shown in Section 4, these solutions of dispersion equations (17) and (21) are

present in the considered frequency range evanescent waves. They do not contribute to the energy
transportation, but play a crucial role in formation of a boundary layer in the vicinity of
boundaries. Various ‘high-order’ sandwich plate theories are meant, in effect, to utilise certain
modes predicted by the ‘refined’ theory and therefore introduce special boundary conditions.
Their asymptotical correctness (with respect to shear wave modelling) may be easily assessed by
comparison of dispersion curves predicted by them with those given by formulas (17) and (21).
However, this analysis lies beyond the scope of the present paper.
3. Elementary modelling of propagation of waves in sandwich plates

The elementary theory of flexural and shear vibrations of sandwich plates used in Refs. [1–3] is
in a certain way a generalisation of the classical Timoshenko theory for homogeneous plates [7]. A
vector of shear angle~W between skin plies is introduced as an independent variable in addition to a
lateral deflection of the whole package of three plies w. All plies are assumed to be isotropic and
the following non-dimensional parameters describe the internal structure of a sandwich plate:
� ¼ h1=h as a thickness parameter, d ¼ r=r1 as a density parameter, g ¼ E=E1 as a stiffness
parameter. In the framework of this theory (see also Ref. [2]), the deformation of a sandwich plate
element is governed by three independent scalar variables: a displacement of the mid-surface of
the whole element w (which is the same for all plies), a shear angle Wx about the y-axis and a shear
angle Wy about the x-axis, see Fig. 2:
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� �
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� �
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Fig. 2. Sandwich plate composition—shear angles.
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þ
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¼ 0. (22)

The effective elastic parameters are
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,
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1
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�
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�
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. ð23Þ

In the case of a purely shear wave, w ¼ 0, so that

qWx

qx
þ

qWy

qy
¼ 0, (24a)

�I2
q2Wx

qt2
þD2

q2Wx

qx2
þ nD2

q2Wy

qxqy
þ C2

q2Wy

qxqy
þ

q2Wx

qy2

 !
� GWx ¼ 0, (24b)

�I2
q2Wy

qt2
þD2

q2Wy

qy2
þ nD2

q2Wx

qxqy
þ C2

q2Wx

qxqy
þ

q2Wy

qx2

 !
� GWy ¼ 0. (24c)

The ‘Airy’-type function Yðx; y; tÞ is introduced as Wx ¼ �qY=qy, Wy ¼ qY=qx to satisfy Eq. (24a)
automatically. Furthermore, the preferred direction of wave propagation is chosen as
Yðx; y; tÞ ¼ Yðy; tÞ. Thus, Eqs. (24b) and (24c) are reduced to a single one:

I2
q3Y
qyqt2

� C2
q3Y
qy3
þ G

qY
qy
¼ 0. (25)

Standard substitution Y ¼ Ŷ expðky� iotÞ leads to an elementary formula, which defines a
wavenumber as

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
2 1þ nð Þr1o2h2

E1
þ 2

g
�

s
. (26)

In this theory, only ‘anti-phase’ in-plane motions of skin plies are considered and this root is
expected to be reasonably close to the first root of the transcendent exact equation (17) in the
practically meaningful range of parameters. This aspect is addressed in Section 3.
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Another type of motion of skin plies should also be considered, which involves their
simultaneous ‘in-phase’ in-plane displacements. It has already been introduced in the previous
section in the framework of a theory of elasticity. Similarly to the elementary theory of a sandwich
plate, which models its ‘anti-phase’ motions, a separate simple model may be suggested in this
case. This model is already provided by Eq. (2), which should be applied with appropriately
averaged stiffness and inertial parameters. Apparently, the interfacial stresses must be set to zero.
Then the equation of motion is

Deq
q2u
qy2
�meq

q2u
qt2
¼ 0. (27)

Here, an equivalent stiffness and an equivalent inertia are straightforwardly defined as

Deq ¼ 2G1h1 þ Gh; meq ¼ 2r1h1 þ rh.

A solution of Eq. (27) is sought as

u0ðy; tÞ ¼ U0 expðky� iotÞ.

Then the root of dispersion equation is

k ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r1o2h2 1þ nð Þ

E1

1þ
1

2

r
r1

h

h1

� �

1þ
1

2

E

E1

h

h1

� �
vuuuuut . (28)

It defines the branch of dispersion curves, which should agree with the first one, obtained from
Eq. (21) formulated by an exact solution of the theory of elasticity.
R
e 

[K
]

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

-0.07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

Ω(a) Ω

Im
 [

K
]

0.02

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.04

0.06

0.08

0.1

0.12

1

2

(b)

Fig. 3. Dispersion curves (a—real parts; b—imaginary parts) for the first ‘anti-phase’ wave. The parameters of

sandwich plate composition: � ¼ 0:33, g ¼ 0:001, d ¼ 0:1.



ARTICLE IN PRESS

S.V. Sorokin / Journal of Sound and Vibration 291 (2006) 1208–1220 1217
4. Dispersion curves

4.1. ‘Anti-phase’ waves

Compare the results obtained for ‘anti-phase’ in-plane wave motions of skin plies. In Fig. 3, the
lowest roots of dispersion equations (17) and (26) are shown versus the frequency parameter
O � oh=c2 for � ¼ 0:33, g ¼ 0:001, d ¼ 0:1, n ¼ 0:3. Curves 1 are plotted after ‘refined’ theory,
curves 2 are plotted after ‘elementary’ theory. As is seen in Fig. 3a, the roots of these dispersion
equations are purely real in the low-frequency range and they describe an evanescent wave. The cut-
on frequency parameter is predicted by these theories as Ocut-on � 0:78 (elementary theory) and
Ocut-on � 0:76 (exact theory), i.e., there is a difference in 2.6%. In Fig. 3b, the same roots are
presented as they transform to purely imaginary ones, which describe travelling waves. The
agreement between the ‘refined’ and the ‘elementary’ theories at low frequencies is very good, see
Fig. 3a, and it is reasonably good at somewhat higher frequencies, see Fig. 3b. It is readily explained
in a closer inspection into the structure of Eq. (17). Indeed, the transcendent functions involved in
this formula may conveniently be expanded into power series on the parameter a regarded as being
small. As long as a single-term expansion is sufficiently accurate (sinhða=2Þ � a=2, coshða=2Þ � 1),
the exact solution recovers the dispersion equation (26). This result proves that the elementary
theory of ‘anti-phase’ motions is asymptotically correct. Apparently, the error grows with the
growth in a frequency parameter, so that the propagating wave is not described sufficiently
accurately already in the vicinity of a cut-on frequency. The exact theory predicts infinitely many
branches of dispersion curves, but in the low-frequency range all of them are complex-valued. The
curve in Fig. 4a displays the real part of the ‘second’ root (there also exist its complex conjugate) of
dispersion equation (17), the curve in Fig. 4b displays its imaginary part.
The agreement between the exact theory (17) and the elementary theory (26) is also good for the

smaller values of density ratio and stiffness ratio. However, for a thicker core, the accuracy of the
elementary theory becomes slightly less satisfactory. It is seen in Fig. 5, plotted for � ¼ 0:15,
g ¼ 0:001, d ¼ 0:1, n ¼ 0:3 in the same way as Fig. 3. The cut-on frequency is predicted by the
exact theory as Ocut-on � 1:095 and by the elementary theory as Ocut-on � 1:158 (the error is
-1.55
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5.8%). The magnitude of the wavenumber of a propagating wave is predicted less inaccurately by
the elementary theory in this case, than in the previous one. Naturally, at low frequencies this
theory remains asymptotically correct, see Fig. 5a. This ‘breakdown’ of an elementary theory is
easily explained by the observation that formation of a standing wave across a thick core ply
quickly deviates from the linear function, ‘embedded’ in the derivation of the elementary theory.
On the other hand, it should be pointed out that, as seen from formula (26), the growth in
parameter e (which damages the validity of the elementary theory) results in an increase in the
magnitude of a cut-on frequency, so that this ‘anti-phase’ wave does not propagate in practically
meaningful low-frequency range.

4.2. ‘In-phase’ waves

In Fig. 6, dispersion curves 1 (exact theory, Eq. (21)) and 2 (elementary theory, formula
(28)) showing a dependence of the non-dimensional wavenumber k on the frequency parameter
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O � oh=c2 are plotted for � ¼ 0:33, g ¼ 0:001, d ¼ 0:1, n ¼ 0:3. The agreement between the
‘refined’ and the ‘elementary’ theories is very good indeed. It is readily explained in a closer
inspection into the structure of Eq. (21). The transcendent functions involved in this formula may
conveniently be expanded into power series on the parameter a regarded as being small. As long
as a single term expansion is sufficiently accurate (sinhða=2Þ � a=2, coshða=2Þ � 1), the exact
solution recovers the dispersion equation (28). This result proves that the elementary theory of ‘in-
phase’ motions is also asymptotically correct.
Curves shown in Fig. 6 display a dependence of the first wavenumber (the one with the minimal

magnitude) on the frequency parameter O. The next branch predicted by the ‘exact’ theory
describes an attenuated wave with a high decay rate. The real and imaginary parts of this
wavenumber are presented in Fig. 7a and b. This wave cuts on at a very high (from the practical
point of view) frequency. Unlike the case of ‘in-phase’ waves, the accuracy of the elementary
theory remains very satisfactory for a thicker core. It suggests that the deformation of a core ply
between skins, which move in phase with each other with the same amplitude, remains uniform at
relatively high frequencies. This is fairly obvious intuitively. The graph in Fig. 8 is plotted for the
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following set of parameters of a sandwich plate composition: � ¼ 0:15, g ¼ 0:001, d ¼ 0:1, n ¼ 0:3.
The elementary theory (curve 2) gives excellent predictions in the whole frequency band
considered.
5. Conclusions

Two ‘elementary’ theories are suggested to describe the propagation of purely shear waves in
sandwich plates. Comparison of dispersion curves obtained by solving characteristic equations
derived from these theories with dispersion curves obtained in the ‘exact’ problem formulation
shows that these theories may be reliably used to assess the wave guide properties of a sandwich
plate in the frequency range of practical interest.
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